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The interface energy for a nematic liquid crystal (NLC) is considered as the sum of potential
energy between LC molecules and molecules of the substrate surface, and a formula for
anchoring energy is derived by elementary principles. The anchoring energy for a NLC
should have two terms, the first term is the same as the Rapini–Papoular expression, the
second is related to the normal of interface and resultes from the biaxial property of a NLC
induced by interface. Hence there are two anchoring coefficients, W1 and W2. We
demonstrate that W1 is equal to the tilt angle strength Ah, and W2 corresponds to the
difference between Ah and the azimuthal strength AQ. Thus Ah–AQ is due to the biaxial
property of the NLC near the interface. Applying this formula to the twisted NLC cell, we
discuss the threshold and saturation field, as well as the maximal tilt angel hm with respect to
Ah/AQ. Previously proposed formulae are discussed from our point view.

1. Introduction

It is well known that the texture of a nematic liquid

crystal (NLC) layer is influenced by the interface as well

as by the external field, and the distribution of the

director n is sensitive to the interface [1]. Rapini and

Papoular (RP) have introduced a simple phenomen-

ological expression for the interfacial energy per unit

area [2]: gs~1/2 A sin2 a, where a is the angle between

the director on the surface n0 and the easy direction e,

and the constant A is termed anchoring strength or

anchoring energy. Using the RP expression, much

experimental and theoretical work has been carried out

for the one-dimensional case [3–17]. The tilt anchoring

strength Ah and the azimuthal anchoring strength AQ

have also been measured. From much experiment data

[18], it appears that the values of Ah and AQ are

different (commonly, Ah&AQ [1]).

When two-dimensional cases (such as a twisted NLC

cell) are considered, a general anchoring energy

expression is necessary. Two modes generalize the RP

expression using the phenomenological method. The

first is a single-parameter formula, expressed by [17]

gs~{1=2A n:eð Þ2: ð1Þ
The second is a two-parameter formula expressed by

[9–16]

gs~1=2Ah sin2 h0{h0

� �
z1=2AQ sin2 Q0{Q0

� �
ð2Þ

in which appear two anchoring strength parameters.
Becia et al. [19] have made a meaningful improvement

to equation (2), but their expression is still incomplete,

and gives wrong predictions for the homeotropic

anchoring case.

More recently, Zhao et al. [20–22] have proposed a

two-parameter and one easy director expression

through a second order spherical-harmonic expansion

of the anchoring energy, which can be expressed by

gs~Wf n:jð Þ2zWg n:gð Þ2 ð3Þ
where the unit vector j, g, together the easy axis e, are the

stationary directions of the second order anchoring energy.

Recently the voltage-controlled twist (VCT) effect

[23] has attracted attention. This effect appears in a

liquid crystal film with negative dielectric anisotropy

sandwiched between a homeotropic substrate with in-

plane grooving and a unidirectional planar anchoring
surface. Various authors have explained this effect from

different phenomenological views. Bryan-Brown et al.

[23] postulated that a grooving homeotropic substrate

has two easy directions. However Zhao et al. [20, 21]

explained the effect with one easy direction but two

anchoring strength parameters.

In considering the various phenomenological*Author for correspondence; e-mail: Yang_gc@hotmail.com
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expressions described above, there is a great need for a

theoretical formula derived by elementary principles to

analyse these expressions, and to improve them. This

theory should answer (i) why Ah is different from AQ;

(ii) the physical mechanism for one easy director or two

easy directors, (iii) the physical reason for one

anchoring strength or two strength parameters.
In this paper, we attempt to derive the formula for

anchoring energy by elementary principles. Consider

that the interface energy is the sum of interactional

potential energy between LC molecules and the

molecules of the substrate surface in principle, and

the anchoring energy is the anisotropic part of this

energy. By supposing a possible form of this potential,

we obtain

gs~{
1

2
W1 n:eð Þ2{ 1

2
W2 n:e|vð Þ2 ð4Þ

where n and v are the directors of the LC and the

normal of the interface, respectively, and e is the

average orientation or equivalent orientation of mole-

cules of substrate the surface. Both W1 and W2 are

related to potential. In addition W1 is approximately

proportional to the scalar order parameter S, and W2 is

related to the biaxial property of the NLC near the

interface.

Comparing our expression with the RP expression

for the one-dimension case, we obtain

Ah~W1, AQ~W1{W2 ð5Þ
This means that Ah2AQ is due to the biaxial property of

the NLC near the interface.

With expression (4) we investigate the weak anchor-

ing twisted NLC cell, and calculate the threshold field

and saturation field, and examine the effect of the

biaxial property, i.e. the difference between Ah and AQ.

We also discuss the relationship between the maximum

tilt angle hm and external field h for different values of

Ah/AQ Comparing our result with reference [17], we see

that the effect of the biaxial property is important,

especially for values of the saturated field hsat and the

maximum tilt angle hm.
We follow by discussing some phenomenological

expressions, including the formula proposed in [20], and

give a conclusion.

2. Microcosmic theory of anchoring energy

The anchoring energy is the anisotropic part of the

interface energy and can be seen as the anisotropic part

of the sum of interaction potentials between LC

molecules and molecules of the substrate surface, in

principle. Suppose molecules of the substrate surface

have an orientation or equivalent orientation e, then

the anistropic part of potential between the ith LC

molecule with tth molecule of the substrate surface can

be expressed as

Vi,t~V (jri{Rtj)(Vi
:et)

2 ð6Þ
where ri is the position vector of the centroid of the

liquid crystal molecule, and Rt is the position vector of

the centroid of the substrate surface molecule, Vi and et

are their orientations, respectively. Then the anchoring

energy can be expressed as

gs~
X

i,t

0
Vi,t ð7Þ

For simplification, we suppose that all molecules of the

substrate surface have the same orientation e on

average, and V(|ri2Rt|) is constant. If V(|ri2Rt|) is

negative, it can be denoted by 2V (Vw0). Otherwise,

when V(|ri2Rt|) is positive it should be denoted by V.

Suppose V(|ri2Rt|) is negative temporarily; adopt the

nearest neighbour interaction approximation and put

the number of terms in summation of equation (7) as N,

then

gs~{NVS V:eð Þ2T ð8Þ
where n†m donates the statistical average.

It is well known that the order parameter tensor Qmn

is given by

Qmn~
3

2
VmVn{

1

2
dmn ð9Þ

Since Qmn is symmetric it can be diagonalized by

choosing the appropriate coordinate frame. The

diagonal form can be written as

Q~

{ 1
2

S{P 0 0

0 { 1
2

SzP 0

0 0 S

0

B@

1

CA ð10Þ

where S is the uniaxial order parameter.

S~
3

2
SV2

zT{
1

2
ð11Þ

and

P~
3

4
S(V2

y{V2
x)T ð12Þ

is the biaxial parameter. Whereas for LCs in the bulk

P is equal to zero because nematics are uniaxial; close

to interfaces P may become finite because the interface

breaks the symmetry. The values of P have been

investigated experimentally [24–26]. We consider that

the biaxial property of a NLC near the substrate is an

important physical condition.

We now calculate the statistical average in equa-

tion (8) by using equation (10). Consider an interface

between the liquid crystal and substrate surface shown

in figure 1. The normal of the interface is n and the

1094 Y. Guo-chen et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



director of the LC is n. If n is not parallel to the n, then

the C‘ symmetry of the LC is broken. However, the

symmetry respective to the plane defined by n and n

persists, as shown figure 1.

We can now adopt the proper coordinate system in

which the order parameter tensor Q can be expressed

by equation (10), such as in the case of liquid crystal Sc

[27]. The unit vectors of the three coordinate axes can

be written as

ẑz~n, ŷy~ n|n
n|nj j , x̂x ~

n|nð Þ|n

n|nj j : ð13Þ

Then from equation (9) have

SV2
1T~

1

3
(1{S){

2

3
P

SV2
2T~

1

3
(1{S)z

2

3
P

SV2
3T~

1

3
(1z2S)

ð14Þ

and

SVmVnT~0, for m=n ð15Þ
Substitution equation (14) into equation (8) yields

gs~{NV SV2
1Te2

1zSV2
2Te2

2zSV2
3Te2

3

� �
ð16Þ

where we put e~(e1, e2, e3). By using equation (13)

e2
1~1{e2

2{e2
3, e2~e: n|n

n|nj j , e3 ~e:n

and from equation (8), we obtain

gs~{NV (Sz
2

3
P)(n:e)2{

4

3
NV

P

jv|nj2
(n:e|v)2

{
1

3
NV ½(1{S)z2P�

ð17Þ

The last term in equation (17) is a constant. We see

thant gs is related to the biaxial parameter P. If the

value of P is small, then (17) can be re-expressed

approximately by

gs~{NVS(n:e)2{
4

3
NV

P

jv|nj2
(n:e|v)2 ð18Þ

Put

W1~2NVS ð19Þ

W2~
8

3
NV

P

jv|nj2
ð20Þ

then gs~{ 1
2

W1(n:e)2{ 1
2

W2(n:e|v)2.

This is equation (4). Note here we suppose V(|ri2Rt|) is

negative.
Two points arise from the foregoing:

(i) The formulae show that the anchoring energy gs

has two easy directors n~e and n~e6v (see the

Appendix for more details). The latter is due to

the biaxial property induced by the interface.

(ii) There are two strength parameters W1 and W2.

Both are proportional to the potential strength

V. Furthermore, W1 is proportional to the scalar

order parameter S and W2 is related to the

biaxial parameter P. Obviously, P is relevant to

the tilt angle h of n. For example, when h~p/2,

C‘ persists, and P~0; however when h~0, the

value of P is maximum. P is therefore a function

of h; only when P is small and proportional to

cos2 h, are W1 and W2 constant. Otherwise, the

formula should be modified{.

Suppose both W1 and W2 are constant. They should

be related to Ah and At. Putting

e~( cos H cos W,H sin W, sin H)

n~( cos h cos Q, cos h sin Q, sin h)

v~(0, 0, 1)

ð21Þ

then

gs~{
1

2
W1½cos h cos H cos (Q{W)zsin h sin H�2

{
1

2
W2½cos h cos H sin (Q{W):

ð22Þ

For the one-dimensional case, if Q~W, we obtain

W1~Ah and if h~H equation (22) yields gs~

21/2(W12W2) cos2(Q2W)21/2W1, giving AQ~W12W2.

This means that the difference between Ah and AQ is

due to the biaxial property of the NLC near the

interface.

Formula (4) is a theoretical result. We know that

there may be some doubts in the derivation; for

example, the expression of interaction potential

between LC molecules and molecules of the substrate

Figure 1. Schematic of interface of LC with the substrate; v
is the normal to the interface, n is the director of the LC.

{If P is not small enough, then W1~2NV(Sz 2
3

P). P is
function of tilt angle h of n, it can be expressed by P~
d1 cos2 hzd2 cos4 hz†<d1 cos2 h by considering invariance of
n~2n and for h~ p

2
, P~0. Then for one-dimensional planar

anchoring g~ 1
2

A1 sin2 hz 1
2

A2 sin4 h.

Nematic anchoring energy 1095
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surface, the biaxial property of a NLC near the

interface, and the supposition that W1 and W2 are

constants, etc. However, this theory is a correct

approach and the its validity can be examined by

experimental result. In a later section we discuss the

twisted NLC cell, using equation (4).

3. The twisted NLC cell and chiral NLC cell

In order to examine the effect of the biaxial property

induced by the interface, we now investigate the twisted

NLC cell using anchoring energy formula (4) and

compare our results with previous studies [17]. We

consider a nematic cell of thickness of l located between

z~0 and z~l of a Cartesian coordinate system. We put

e~(1, 0, 0) for z~0 ð23Þ

e~( cos Qt, sin Qt,0) for z~l ð24Þ
where Q1 is the twist angel, e.g. Qt~0,90‡,270‡, etc. The

external magnetic field is

H~ 0, 0, Hð Þ ð25Þ
The director n may be expressed as

n~ cos h cos Q, cos h sin Q, sin hð Þ ð26Þ
where h and Q are the tilt and azithmual angles,

respectively. The anchoring energies of the substrate at

z~0 and z~l are, respectively

g{
s ~{

1

2
W1 cos2 h0 cos2 Q0{

1

2
W2 cos2 h0 sin2 Q0

for z~0

ð27Þ

gz
s ~{

1

2
W1 cos2 hl cos2 Qt{Qlð Þ

{
1

2
W2 cos2 hl sin2 Qt{Qlð Þ for z~l

ð28Þ

The total free energy [27] is

G~S

ðl

0

gbdzz

ð
gsds

~S

ðl

0

1

2
f (h)(

dh

dz
)2z

1

2
h(h)(

dQ

dz
)2zk2 cos2 h

dQ

dz

�

z
k2

2

2k22
{

1

2
xaH2 sin2 h

�
dz

zS {W1 cos2 h0 cos2 Q0{W2 cos2 h0 sin2 Q0

� �

ð29Þ

where

f hð Þ~k11 cos2 hzk33 sin2 h ð30Þ

h hð Þ~cos2 h k22 cos2 hzk33 sin2 h
� �

ð31Þ

k2~{k22
2p

p0
ð32Þ

and k11, k22 and k33 are splay, twist and bend elastic

constants of the LC, respectively, p0 denotes the pitch

of the material. Applying the variation calculus of h

and Q of G [28, 29], respectively, we obtain

f hð Þh00z 1

2

df hð Þ
dh

h02{
1

2

dh hð Þ
dh

Q02z2k2 sin h cos hQ0

zxaH2 sin h cos h~0

ð33Þ

Q0~
1

h hð Þ C1{k2cos2h
� �

ð34Þ

where C1 is a constant. Substitution of equation (34)

into equation (33) leads to

f (h)h02~xaH2(sin2hm{sin2h)z
1

h(hm)
(C1{k2 cos2 hm)2

{
1

h(h)
(C1{k2 cos2 h)2

ð35Þ

where hm~h(l/2) and is dependent on the applied field.

The boundary conditions for the lower substrate

surface are given by

f (h0)
dh

dz
z~0j ~(W1{W2) sin h0 cos h0 cos2 Q0

zW2 sin h0 cos h0

ð36Þ

h(h0)
dQ

dz
z~0zk2 cos2 h0~(W1{W2)cos2 h0 sin Q0 cos Q0

�� ð37Þ

The integration of equation (35) becomes

l

2
~

ðhm

h0

N hð Þð Þ
1
2dh ð38Þ

where N (h) is defined by

N hð Þ~f hð Þ xaH2 sin2 hm{ sin2 h
� �

z
C1{k2 cos2 hm

h hmð Þ

�

{
C01{k2 cos2 h

h hð Þ

�{1
ð39Þ

and C1~(W12W2) cos2 h sin Q0 cos Q0 can be obtained

through substitution of equation (34) into (37).

Also, equation (34) can be expressed by

dQ~
N hð Þð Þ

1
2

h hð Þ C1{k2 cos2 h
� �

dh ð40Þ

1096 Y. Guo-chen et al.
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and for boundary conditions equation (36) becomes

f h0ð Þ
N h0ð Þð Þ

1
2

~ W1{W2ð Þ sin h0 cos h0 cos2 Q0

zW2 sin h0 cos h0:

ð41Þ

In order to discuss some problems over the whole

range (0, ‘) of the external field H, we make a variable

transformation. Putting u~sin2hm and adopting the

new variable v to displace h,

v~
tan2 h

tan2 hm

, v0~
tan2 h0

tan2 hm

: ð42Þ

Meanwhile, we introduce the dimensionless parameter

l~pk22/(W1l), ~W1/(W12W2)~Ah/AQ, and the

reduced magnetic field h~H
�

H0
c (where

Hc~p=l k11=xað Þ
1
2). Substituting equation (42) into

equation (38), we obtain

ph~

ð1

v0

1{uzuvzc

1{v

	 
1
2 1

1zX

	 
1
21

v
dv: ð43Þ

Substitution of equation (42) into (40) and (41) gives

1

2
Q1{Q0~

1

$lh

ðl

v0

1{uzuvzcuv

1{v

	 
1
2 1

1zX

	 
1
2

|
sin Q0 cos Q0 1{uzuvð Þz2$ll=p0 1{uzuv0ð Þ

2 1{uzuvzguvð Þ 1{uzuv0ð Þv1
2

dv

ð44Þ

h~
k22

k11

1

$l

1{uzuv0zcuv0ð Þ
1
2

1{uzuv0zcuv0

1

1zX0ð Þ
1
2

v
1
2

0

1{v0ð Þ
1
2

|(cos2Q0z${1)dv

ð45Þ

where

X~(1{uzuv)
k22

k11

sin2 Q0 cos2 Q0½(1zgu)(2{uzuv){(1zg)�
($l)2h2(1{uzuv0)2(1zgu)(1{uzuvzguv)

(

{
(2$ll=p0)2(1zg)2(1{uzuv0)2z4$llg=p0 sin Q0 cos Q0(1{u)(1{uzuv0)

($l)2h2(1{uzuv0)2(1zgu)(1{uzuvzguv)

)

ð46Þ

and c~(k332k11)/k11, g~(k332k22)/k22.

For a given value magnetic field h, the values of v0, Q0

and hm can be determined from equations (43)–(46).

We now discuss the threshold field Hth, the satura-

tion field Hsat and the maximum tilt angle hm.

The threshold field Hth. Taking the limit u~0 at the

point of threshold, equations (46), (43), (44) and (45)

become

Xth~
1

($l)2h2
th

k22

k11
½sin2 Q0 cos2 Q0(1{g)

{(2$l
l

p0
)2(1zg)z4$l

l

p0
sin Q0 cos Q0�

ð47Þ

phth

2
~

ðl

v0

1

2 v 1{vð Þð Þ
1
2

1

1zXthð Þ
1
2

dv ð48Þ

1

2
Qt{Q0~

sin Q0 cos Q0{2pll=p0

$l

|

ð1

v0

1

2 v 1{vð Þð Þ
1
2

1

1zXthð Þ
1
2

dv

ð49Þ

hth~
k22

k11

1

$l

1

1zXth

	 
1
2 v0

1{v0

	 
1
2

${ sin2 Q0

� �
: ð50Þ

From equation (48) and (49), we obtain

Q1{2Q0~
2pl

p0
z

p

$l
sin Q0 cos Q0

ð51Þ

and

1{v0

v0

	 
1
2

~ tan
p

2
hth 1zXthð Þ

1
2

h i
:

Substitution of equation (48) into (50) gives

${ sin2 Q0~
k11

k22
$lhth 1zXthð Þ

1
2tan

p

2
hth 1zXthð Þ

1
2

h i
: ð53Þ

Note that our results are the same as in reference [17]

when ~1, i.e. Ah~AQ.

We now carry out the numerical calculations with the

same material parameters as used in [17]. Figures 2 and

3 shows that l and are dependent on the threshold

field for Qt~p/2 and Qt~3p/2. We see that for Qt~3p/2

the value of the threshold field clearly becomes smaller

with the increase of .

The saturation field Hsat. Taking the limit up1,

equations (46), (43), (44) and (45) become

Xsat~
k22

k11

sin2 Q0 cos2 Q0v{(2$ll=p0)2v2
0

($l)2h2
sat(1zg)

ð54Þ

phsat~ 1zcð Þ
1
2

ð1

v0

1

v 1{vð Þ
1
2 1zXsatð Þ

1
2

dv ð55Þ

1

2
Qt{Q0~

1zcð Þ
1
2

2$lhsat(1zg)v0

ð1

v0

sin Q0 cos Q0vz2$ll=p0v0

v 1{vð Þ
1
2 1zXsatð Þ

1
2

dv

ð56Þ

Then the integration of equation (55) can be performed

analytically to give

tan
pY

2

	 

~

$lY v0(1{v0)ð Þ
1
2

$lð Þ2Y 2v2
0z(k22=k33)2 sin2 Q0 cos2 Q0

h i1
2

ð57Þ

where

Y~ h2
sat

k11

k33

	 

{

2k22

k33

l

p0

	 
� �1
2

: ð58Þ

(46)

(52)

Nematic anchoring energy 1097
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With a similar process, the integration of equation (56)

can be obtained as

1

2
Qt{Q0{

plk22

p0k33

~

sin{1 k22=k33 sin Q0 cos Q0 1{v0ð Þ
1
2

$lð Þ2Y 2v2
0z(k22=k33)2 sin2 Q cos2 Q0

h i1
2

8
><

>:

9
>=

>;

ð59Þ

And the boundary condition (45) changes to

${ sin2 Q0~

$lð Þ2Y 2v0z(k22=k33)2 sin2 Q0 cos2 Q0

h i1
2 1{v0ð Þ

1
2

v
1
2

0

:
ð60Þ

From equations (57), (59), and (60), we obtain the

relationship between l and the reduced saturation field

hsat

$l
k33

k22
~

tanh pY=2ð Þ
Y

1z
cos2 T

sin2 pY=2ð Þ

(

z ${1ð Þ 2z
1

sinh2 pY=2ð Þ

"

{
1

Ylk33=k22tanh pY=2ð Þ

��

ð61Þ

where TwQt/22plk22/(p0k33).

In Figures 4 and 5, it is clearly seen that l and v are

dependent on the saturation field Qt~p/2 and Qt~3p/2

respectively. We note that the saturation field hsat

increases with increase of for Qt~p/2; however, it

decreases with increase of for Qt~3p/2.

From above calculations, we find that the difference

between Ah and AQ affects both the threshold and

saturation fields, and is greater for the latter.

The maximum tilt angle hm. By using equations (33),

(44) and (45), we can obtain the value of u for a given

value of the external field H and the maximal tilt angle

hm is also obtained. The results are shown in Figure 6,

Figure 2. Dependence of the reduced threshold field hth on l
and for a twisted nematic cell. a: ~1, b: ~2, c:

~5, d: ~20, e: ~50.

Figure 3. Dependence of the reduced threshold field hth on l
and for a supertwist cell. a: ~1, b: ~2, c: ~5, d:

~20, e: ~50.

Figure 4. Dependence of the reduced saturation field hsat on
l and for a twisted nematic cell. a: ~1, b: ~2, c:

~5, d: ~20, e: ~50.
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which indicates that hm becomes smaller with increasing

for l~0.5 in high field H.

We note that the authors of reference [22] have

calculated the threshold and saturation properties of a

twisted NLC under an electric field. Their formulae for

anchoring energy are discussed below.

4. Discussion and conclusion

We have deduced the formula for anchoring energy

from microcosmic theory in §2 This result is based on

the precondition that the anisotropic part of the

interaction potential between two species of molecules

V(i,t) is negative. However, for some cases V(i, t) is

positive. For these cases, gs should be

gs~1=2W1(n:e)2z1=2W2(n:e|v)2 ð62Þ
where W1 and W2 are expressed by equations (19) and

(20), and are positive. Then the minimum value of gs

occurs at n~e, and e should be perpendicular to both e

and e6v,

e~e| e|vð Þ= e|vj j: ð63Þ

We now compare our expression in equation (63)

with the formula proposed by Zhao et al. [20, 21, 22],

and find that gs is the same. Zhao et al. have explained

the VCT effect by means of their formula.

We conclude:

(1) For common cases, V(i, t) is negative, and two

easy directions and two strength parameters

appear. The orientation or equivalent orienta-

tion of substrate molecules e is one of the easy

directions.

(2) For other cases, V(i, t) may be positive. Then

there is one easy direction and two strength

parameters.

Appendix

Put n~(n1, n2, n3), e~(e1, e2, e3), a~e6v~(a1, a2,

a3) and b~e6a~(b1, b2, b3), then gs is a function of n1

and n2, and Ln3

Ln1
~{ n1

n3

Ln3

Ln2
~{ n2

n3
.

Lgs

Ln1
~{W1 n:eð Þ(e1{e3

n1

n3
){W2(n:a)(a1{a3

n1

n3
) ðA1Þ

Lgs

Ln1
~{W1 n:eð Þ(e2{e3

n2

n3
){W2(n:a)(a2{a3

n2

n3
) ðA2Þ

L2gs

Ln2
1

~{W1 e1{e3
n1

n3

	 
2

zW1 n:eð Þe3
n2

3zn2
1

n3
3

{W2 a1{a3
n1

n3

	 
2

zW2 n:að Þa3
n2

3zn2
1

n3
3

ðA3Þ

L2gs

Ln2
2

~{W1 e2{e3
n2

n3

	 
2

zW1 n:eð Þe3
n2

3zn2
2

n3
3

{W2 a2{a3
n2

n3

	 
2

zW2 n:að Þa3
n2

3zn2
2

n3
3

ðA4Þ

L2gs

Ln1n2
~{W1 e2{e3

n2

n3

	 

e1{e3

n1

n3

	 

zW1 n:eð Þe3

n1n2

n3
3

{W2 a2{a3
n2

n3

	 

a1{a3

n1

n3

	 

zW2 n:að Þa3

n1n2

n3
3

:

ðA5Þ

Figure 6. Dependence of the reduced saturation field hsat on
maximum hm for anchoring energy l~0.5; a: ~1, b:

~2, c: ~5, d: ~20, e: ~50.

Figure 5. Dependence of the reduced saturation field hsat on
l and for a supertwist cell. a: ~1, b: ~2, c: ~5,
d: ~20, e: ~50.
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The solutions of Lgs

Ln1
~0 and Lgs

Ln2
~0 are as follows.

(i) For n~e:

Here, e1{e3
n1

n3
~e1{e3

e1

e3
~0, while a~

e6v~n6v, so a\n, nea~0.

(ii) For n~a:

Here, a1{a3
n1

n3
~a1{a3

a1

a3
~0, while n~

a~e6v, so n\e, nee~0.

(iii) For n~e6a~e6(e6v)~b:

Here, n\e, n\a, so nee~0 and nea~0.

Using the expressions (A1–A5), one can draw the

following conclusions [29]. (i) For W1w0 and W2w0,

the anchoring energy gs has minimum value for the

solutions n~e and n~a. (ii) For W1v0 and W2v0, the

anchoring energy gs is minimum for the solution n~b.
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